Nonlinear Evolution Governed by Accretive Operators in Banach Spaces: Error Control and Applications
نویسندگان
چکیده
Nonlinear evolution equations governed by m-accretive operators in Banach spaces are discretized via the backward or forward Euler methods with variable stepsize. Computable a posteriori error estimates are derived in terms of the discrete solution and data, and shown to converge with optimal order O( √ τ). Applications to scalar conservation laws and degenerate parabolic equations (with or without hysteresis) in L, as well as to Hamilton-Jacobi equations in C are given. The error analysis relies on a comparison principle, for the novel notion of relaxed solutions, which combines and simplifies techniques of Benilan and Kružkov. Our results provide a unified framework for existence, uniqueness and error analysis, and yield a new proof of the celebrated Crandall-Liggett error estimate.
منابع مشابه
Some iterative method for finding a common zero of a finite family of accretive operators in Banach spaces
The purpose of this paper is to introduce a new mapping for a finite family of accretive operators and introduce an iterative algorithm for finding a common zero of a finite family of accretive operators in a real reflexive strictly convex Banach space which has a uniformly G^ateaux differentiable norm and admits the duality mapping $j_{varphi}$, where $varphi$ is a gauge function ...
متن کاملRegularization of Nonlinear Ill-posed Equations with Accretive Operators
We study the regularization methods for solving equations with arbitrary accretive operators. We establish the strong convergence of these methods and their stability with respect to perturbations of operators and constraint sets in Banach spaces. Our research is motivated by the fact that the fixed point problems with nonexpansive mappings are namely reduced to such equations. Other important ...
متن کاملStrong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملPeriodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملON MULTIVALUED NONLINEAR VARIATIONAL INCLUSION PROBLEMS WITH (A, eta)-ACCRETIVE MAPPINGS IN BANACH SPACES
Based on the notion of (A,η)-accretive mappings and the resolvent operators associated with (A,η)-accretive mappings due to Lan et al., we study a new class of multivalued nonlinear variational inclusion problemswith (A,η)-accretivemappings in Banach spaces and construct some new iterative algorithms to approximate the solutions of the nonlinear variational inclusion problems involving (A,η)-ac...
متن کامل